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Abstract

Dynamic behaviour of a Jeffcott rotor system with a slant crack under arbitrary crack o~ientations is investigated.
Using concepts of fracture mechanics, flexibility matrix and stiffness matrix of the system are calculated. The
system equations motion is obtained in four directions, two transversal, one torsional and one longitudinal, and
then solved using numerical method. In this paper a symmetric relation for global stiffness matrix is presented and
proved; whereas there are some literatures that reported nonsymmetrical form for this matrix. The influence of
crack orientations on the flexibility coefficients and the steady-state response of the system are also investigated.
The results indicate that some of the flexibility coefficients are greatly varied by increasing the crack angle from
30° to 90° (transverse crack). It is also shown that some of the flexibility coefficients take their maximum values
at (approximately) 60° crack orientation.
@ 2012 University of West Bohemia. All rights reserved.
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1. Introduction

Modem day rotors are designed for achieving higher revolutionary speed. On the other hand
such systems have noticeable mass and thus considerable energy. It is obvious that any phe-
nomenon that causes sudden release of this energy may lead to a catastrophic failure in such
systems. Since 1980s, numerous researchers have studied the response ofrotating systems with
crack. Recently [3] investigated a simple Jeffcott rotor with two transverse surface cracks. It is
observed significant changes in the dynamic response of the rotor when the angular orientation
of one crack relative to the other is varied. A response-dependent nonlinear breathing crack
model has been proposed in [2]. Using this model, they studied coupling between longitudinal,
lateral and torsional vibrations. They observed that motion coupling together with rotational
effect of rotor and nonlinearities due to their presented breathing model introduces sum and dif-
ference frequency in the response of the cracked rotor. Transient response of a cracked Jeffcott
rotor through passing its critical speed and subharmonic resonance has been analysed by [4].
The peak response variations as well as orbit orientation changes have been also studied ex-
perimentally. In comparison to transverse crack, there are a few investigations on slant cracks.
A qualitative analysis of a transverse vibration of a rotor system with a crack at an angle of
45 degrees toward the axis of the shaft has been presented in [5]. It has been concluded that the
steady-state transversal response of the rotor system contain peaks at the operating speed, twice
of the operating speed and their subharmonic frequencies. The transverse vibration of a rotor
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Nomenclature
A,A cross sectional area of crack and shaft K},K}Il opening and tearing mode of crack due

(m2) to internal load "i" (N/m3/2)

A' cross sectional area of open part of [KJl local stiffness matrix
crack surface (m2) ql longitudinal force (internal reaction)

[ell local flexibility matrix of cracked shaft (N)
res] total flexibility matrix of uncracked Q4, qs bending moments (internal reactions)

shaft (N. m)

Etotal total strain energy of a cracked shaft RM radius of the Mohr circle (m)
(N. m) T torsional moment (N . m)

FI,F2, FIll influential functions 'U longitudinal displacement of center of
Fx,Fy transversal forces (external loads) (N) disk (m)
Fz longitudinal force (external load) (N) U strain energy of uncracked shaft
G modulus of rigidity (N/m2) (N. m)
h height of element strip (m) ltV strain energy due to crack (N . m)
[H] transformation matrix x,Y transversal displacements of center of
I moment of inertia for cross section disk (m)

(m4) Ct rotor center displacement in rotational
J polar moment of inertia of disk (m2) direction (torsional displacement of
Jp polar moment of inertia for cross center of disk) (rad)

section (kg. m2) f3 rotation angle of element E2 (Mohr
k.ij cross-coupled stitfness (N/m, N/rad) circle) (rad)
kX1 k.y stiffness in x and y direction (N/m) "Y crack depth (m)
ku stiffness in longitudinal direction 'TIo location 'of elemental strip along 'TI'

(N/m) direction (m)
kT stiffness in torsional direction (N/rad) e crack orientation angle (rad)
[k]g global stiffness matrix (j 111 center of Mohr circle (N/m2)

KI,KIlI total opening and tearing mode of (ji , (j~ axial stress due on element E2 (after
crack (N/m3/2) rotation) (N/m2)

71 shear stress on element EI (before
rotation) (N/m2)

7' shear stress on element E2 (after1
rotation) (N/m2)

system with a slant crack under torsional vibration has been investigated in [6]. It has been con-
sidered that the transverse vibration of the rotor is to be closely related to the torsional vibration.
A comparison between the response of transverse and slant cracks has been presented in [10].
They proposed use of mechanical impedance for crack detection. It is concluded that vibration
behavior of a rotor with a slant crack is less sensitive to mechanical impedance. A simple Jeff-
cott rotor model of a rotor with a slant crack has been considered by [1]. It is observed a rotor
with a slant crack is stiffer in lateral and longitudinal directions, but more flexible in torsion,
compared to a rotor with a transverse crack. Recently [8] in his good review paper explained
many crack models such as open crack model, switching crack model, second moment inertia
model, breathing models and harmonic model approaches. The dynamics behaviour of a slant
(450 crack angle) cracked rotor has been studied by [7]. Using Jeffcott rotor model, the equa-
tion of the motion extracted in four directions. Global stiffness of the system obtained from
concepts of fracture mechanics and strain energy release rate. It is included that existence of
the frequency of torsional excitation in longitudinal response and combined frequencies of the
rotating frequency and frequency of torsional excitation in transversal response are good signs
for slant crack detection.

In this paper, the dynamic behavior of a cracked Jeffcott rotor with a slant crack on the shaft
is considered. Motion equations of the system that are obtained in four directions, two transver-
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sal, one torsional and one longitudinal, are solved by Runge-Kutta method. Using concepts
of fracture mechanics, flexibility matrix and thus stiffness matrix of the system are calculated.
Also the influence of crack orientations on the flexibility coefficients and subsequently on the
amplitude of the frequency responses in several prominent frequencies is investigated. These re-
sults depict a better understanding for the dynamic behavior of slant cracked shaft under various
crack orientations.

2. Equations of motion

Consider a Jeffcott rotor rotating at speed 0 (Fig. 1). The shaft is assumed to be massless and a
disk of mass m is placed in the middle of the shaft. A view of cross section of the disk is shown
in Fig. 2. In this figure XOY is the fixed coordinate, ~OTJ is the rotational coordinate with
center 0 and eo'TJ' is rotational coordinate that is located at the center of the disk and attached
to it. Point 0' is the center of the disk, c is the disk center of mass, 0: is the angle represents
the torsional vibration of the system and <p is the angle between center of mass and rotational
coordinate.

In the following equations indices u and T denote the coefficient for torsional and longi-
tudinal directions respectively. Using d' Alambert principle (Fig. 3), equation of the motion in
four directions (two transversal, one torsional and one longitudinal) can be established as

mx + cx + kxx + kxyY + kxTO: + kxuu = (1)

-mg +me(O + a)2 cos(Ot + 0: + cp) +measin(Ot + 0: + <p),
my + cy + kxyx + kyY + kyTO: + kyuu = (2)

me(O + a)2 sin(Ot + 0: + <p) - mea cos(Ot + 0: + <p),
Ja + CT(O + a) + kxTx + kyTY + kTo: + kTuu = (3)

NI(t) +mgesin(Ot + 0: + <p) +mexsin(Ot + 0: + cp) - myecos(Ot + 0: + cp),
mil + Cuu + kx~x + kyuY + kTuO: + kuu = 0, (4)

where J is the mass moment of inertia of the disk about 0', c, CT, and Cu are the damping
coefficients in transversal, torsional and longitudinal directions. It should be mentioned that
these equations are the same with those reported in [7]. Also, NI(t) is the torsional excitation
and e is the eccentricity of the disk. According to (1)-(4) the stiffness matrix of the system can
be extracted as:

(
~ ) ~ [k] = [ :;y
0: 9 kxT
U kxu

(5)

o
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Fig. 1. A schematic of Jeffcott [0- Fig. 2. Cross sectional view of Fig. 3. Forces exerted on the
tor crack at middle point of the shaft mass center of the disk

37

\.



R. Ramezanpour et al. / Applied and Computational Mechanics 6 (2012) 35-52
,

Existence of crack can affect the elements of this matrix. This will be shown in the following
sections. .!I

3. Flexibility of a rotor with slant crack

In this section using strain energy release rate method and Castigliano's theorem, the crack
"compliance tIiatrix is calculated. It is known that the total strain energy of a cracked shaft is the

sum of strain ~nergy of uncracked shaft and strain energy caused by crack.

Etotal = Uun~rackedshaft + Wcracked shaft. (6)
•Consider a cracked shaft (Fig. 4) under four external loads, three forces exerted in principle

directions and one torsional moment in Z directions. Thus, the strain energy of an uncracked
shaft can be expressed as

(7)

where G is the shear modulus and A is the cross sectional area of the shaft.
Suppose t,pat internal reactions on an element of shaft containing crack, are two bending

moments q4 ~nd q5, one torsional moment T and one longitudinal force ql (Fig. 5). Thus the
additional str~in energy due to crack is a function of Q5, Q4, T and ql'

According to (6) and also using Castigliano's theorem, the local flexibility of cracked shaft
will be deterfQ.ine using following relation

"

(8)
a2E a2u a2liV

--=--+--.a~a~ a~a~ a~a~
II
II
il
~

If there is not:.exist a crack on the shaft, the flexibility due to crack is zero. Therefore, flexibility
of the system) will be equal to the flexibility of an uncracked shaft. Using (7), the first term in
the right hand side of (8) can be determined.

The next step is to find relations between Fi and q.i. Using Figs. 6a and 6b, the following
relations can be obtained

'I

Fyl
4 '

(9)

Considering (p) and using the chain rule, (8) leads to flexibility matrix of cracked shaft, [e]t (see

\ f;Jf'-,::l/J v;;!j'~
T ffy x

Fig. 4. A cr~cked shaft under external loads
;,

Fig. s. Internal reactions on the crack
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Fig. 6. Relation between external and internal loads: (a) between Fx and Q5, (b) between Ry and Q4
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'I

Eq. (10) dn be written in compact form as
II

!
i
I,

where

(12)

(13)

(14)

(15)
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It is obyious that (11) leads to a symmetric matrix whereas some researchers reported non
symmetric !form for it [8,9]. Using to (11), one is able to determine local flexibility of a cracked
shaft if add!itional strain energy due to crack can be determined. This is feasible using concepts
of fracture 'htechanics. According to [7], strain energy due to crack is given by

!I 112 '11( 2
:1 w = EIKI dA + E' 1 + v)KIII dA,
~ N A

where for tbaring mode (KIll) the total surface of crack, i.e. A, is used for integration while for
the opening mode (KI) part of the crack surface which remains open during the rotation, A',
should be Hlking into account [7].

Crack s4rface at ()orientation is shown in Fig. 7. Using this figure (Fig. 7) the stress intensity
factors for 1slant crack at () angle are given by

II
For ql, 'i

il 1 Ql. 2(()) r,;;:;;::;F K1 Ql. (() (()) r,;;:;;::;F
,I KI = --2 sm y Jr"( 1, III = Jr R2 sm cos y Jr"( III.
( JrR

:1 4 4Q4Xo. 2 ( ) r,;;:;;::; 4 2Q4Xo. ( )
II KI = --4 sm () yJr"(F1, KIll = "'"R4 sm ()) cos(() v'1FYFIll.
~ JrR, "

il

II
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Fig. 7. The crack surface at orientation angle e Fig. 8. The location of elements Eland E2 used
in Mohr circle

}.(5 4q5JR2 - X6 . 2(8) r-;;:;:;; L'
I= 4 sm y7fir2,

7fR

And finally for T,

Kill = 2q
54sin(28)V1FiFIlI.

7fR
(16)

FIll =

2TJR2 - x2
7fR4 0 sin(28)V1FiF2,

-2TJR2 - X6
--7f-R-4-- cos(28) V1Fi FI II,

where
Xo = fJosin( 8).

According to [11]

vtan(A) [ i . 3] 10.752 + 1.01 yIR) + 0.37(1 - sm(A)) (')'A R2 - x2 cos /\
o

Jtan(A) [ . 4] 1. A 0.923 + 0.199(1 - sm(A)) COS(A)'

Vtan(A) A = 7fi

A' 4JR2 - x;'
Therefore, the total strain density functions are

(17)

(18)

(19)

(20a)

(20b)

(20c)

KIll =

(21)

(22)

Eq. (18) has appeared in different forms in literature [1,2]. Here, we have used Mohr circle to
extract its conect form. To show this, let consider two elements El and E2 as depicted in Fig. 8.
Element El coincides with element E2 after rotating it {3degree counterclockwise where

7f
(J=--8
I 2 .
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Fig. 10. The Mohr circle (center O"M and radius
RM)
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(24)

(25)

(26)

(27)

71 sin(2,6) = 71 sin(1I"- 2e) = 71 sin(2e),
(J; - -71 sin(2e),

71 cos(2,6) = -71 cos(2e).
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Fig. 9. The position of elements E I and E2 after
'I

rotation f3 (ctW)
ii

It is obviouJ that in relation (18), the stress intensity factor is due to the torsional moment T.
Torsional m6ment T creates shear stress 71 equal to

!I

~ TJR2 - x2
il 71 = (n-R4/2) 0.

'I

Shear stressb on element El and stresses on element E2 are 'shown in Fig. 9.
From equalizing these to configurations, the center (JM and radius RM of the Mohr circle

are zero and
l
171 respectively so according to Fig. 10, one can obtain
II

II
i:
II
Ii
Ii

(28)

(30)

(29)

(31)

[K]l = [e]ll.

where

Thus, the cop-ect form of the stress intensity factor for the third mode caused by T is given by
!I

II 2TJR2 - x2 -2TJR2 - x2Kn~= R4 ° cos(2,6)-Ji0FII1 = R4 ° cos(2e)y7FiFII1.
~ 11" 11"

After calculating the local flexibility of a cracked rotor, local stiffness of the system can be
I

calculated 'I

I
,i
'I

The global stiffness matrix in the inertia coordinate system is
II

!I [K]g = [Hr1[K]z[H],
I'

II [COS(<I» sin (<I» 0 0 J
!"I [H] = - sin( <I» cos( <I» 0 0 <I> = fU + a.
:1 0 0 1 0 '
il 0 0 0 1
II

For a 9.5 mm. diameter shaft with a crack depth equal to its radius, the elements of the local flex-
ibility matrik are evaluated for different crack orientations from 30° to 90° (transverse crack).
In Fig. 11 th~ variations of these flexibilities versus CCLpl [2] and crack orientations (30°, 45°,
60°, 70°, 80: and 90°) are shown. It should be mentioned that the crack tip is divided into

ii
'i

ICrack closhre line position

il
,I
II
ii
I~
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360 point for using CCLP method. It means that for CCLP = 180 the crack is fully open and
. "CCLP =O~r 360 exhibits a fully closed crack.

Accordirtg to Fig. 11, increasing the value of crack angle increases the maximum value of
c(1, 1) and 'c(2, 2). In fact the maximum value of these coefficients occurs when the crack is
fully open (i.e. CCLP = 180). When the crack is fully open, in bending, the flexibility of the
transverse crack is more than that of the slant crack and flexibility is a monotonic function of
the crack angle. For fully open crack c(3, 3) for slant crack is higher than the transverse one.
When the etack is fully closed, the value of c(1, 1) for slant crack is higher than the transverse
one. Howev;er, there is no difference between the values of c(2, 2) for slant crack and transverse
crack (for fully closed crack).
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Fig. II. Variation of the elements of local flexibility matrix versus CCLP and crack orientation from 30°
to 90° '

Fig. 11 ~hows that generally in torsion, slant crack is more critical than the transverse crack.
Similar co~clusion is presented in [1]. Whereas for closed crack, transverse one is flexible
than slant one. It should be mentioned that for a fully closed crack, the slant crack with 45°
orientation ~ngle has no corresponding flexibility coefficient in torsion. This is due to the fact
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that according to relation (22), when () is 7r /2, stress intensity factor in 3rd mode that caused by
T will be zero. Therefore, among slant cracks with different orientations, 45° slant crack has
the minimum value in torsion.

It should be noticed that c(3,3) coefficient for a transverse crack is not sensitive to the
amount of the open part of crack. In other words the value of c(3, 3) does not depend on the
value of CCLP. c( 1, 2) and c( 2, 4) in CCLP = 0, CCLP = 180 and CCLP = 360 are zero, but in
other CCLPs are not zero.

The elements of c( 2, 4) and c( 1, 2) for open and closed cracks are not depended on the crack
angle. In other words, c(2, 4) and c(l, 2) do not have any rule in coupling between the bending in
different directions. If one considers the breathiong crack, the elements obtain their maximum
at CCLP = 90 and 270. Elements c(4, 4) and c(l,4) have a trend similar to c(l, 1). For fully
closed crack the value of c(4,4) and c(l, 4) for slant crack are higher than the transverse one.

From Fig. 11 it can be seen that the coefficients c(l, 3) and c(2, 3) are zero for transverse
crack. These elemnts cause coupling between torsional and transversal directions. This means
that the effects of coupling for slant crack is more than the transverse one. Therefore, in general
it is resonable that one expects there exist more frequencies in the spectrums of responses for
the slant crack in comparison to those relate to the transverse one.

It is worth mentioning that from Fig. 11, one can observe that the maximum value of ele-
ments c(l, 3), c(2, 3) and c(3, 4) versus crack angle occurs at 60 degrees for open crack. How-
ever, for open crack c(2, 3) does not have any rule in coupling between torsional and bending
vibration.

4. Vibration response of rotor system with slant crack

The parameters that are needed for solving (1)-(4) are tabulated here (Table 1).

Table I. Solution parameters

Revolutionary speed n = 500 rpm Disk mass m = 0.595 kg
Torsional excitation freq. WT = 0.6n = 300 rpm Shaft length l = 0.26 m
External torsional excitation M(t) = sin(wTt) Shaft diameter D = 9.5mm
Transversal damp coefficient C = 41.65 kg/s Disk diameter dp = 76 mm
Torsional damp coefficient CT = 0.0091 kg . m"L/s Initial phase angle <p = 1r/6 rad
Longitudinal damp coefficient Cu = 146.2034 kg/s Poisson ratio v = 0.3
Modulus of elasticity E = 210 GPa Eccentricity e = 0.1643 mm

Solution of motion equations considering breathing model for the crack is very time con-
suming in comparison to open crack model. On the other hand, there are the same prominent
characteristic frequencies for these two models [7]. Therefore, all calculations in this paper are
about open crack model and its effects on the response of the system. Runge-Kutta method is
used for solving the equations of the motion. Using this method, the response of the Jeffcott
rotor with a slant crack under different crack angles is evaluated. Figs. 12-15 show the system
responses for crack orientations 30°,45°, 60° and 900 respectively. Theses responses are related
to two transversal, one torsional and one longitudinal direction. It should be mentioned that
response for other angles such as 60°, 70° and 80° are obtained but are not presented here.

According to Fig. 12, for 30° slant crack, the spectrum of transversal (vertical and hori-
zontal) responses contain nand 2D frequencies and their side bands CD:l: WT and 2D :l: WT)'
Fig. 13 show that there are D, 2D, D :l: WT, 2D :l: WT and 3D frequencies in the spectrum of
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Fig. 12. Spectmm of the rotor response for 30° slant crack
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Fig. 13. Spectmm of the rotor response for 45° slant crack
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transversal responses for 45° slant cracks. Whereas there is only n, 2n, n :l:::WT and 2n :l:::WT
frequencies in the spectrum of transversal response for transverse crack. It is considerable that
general schemas of spectrums of 30° and 90° slant cracks are almost the same and have sensible
difference in compare to other spectrums. It can be explained that there are three coefficients
(c(l, 3), c(2, 3) and c(3, 4)) in the flexibility matrix that can cause coupling between torsional
and other directions. Among these coefficients, there are two coefficients that can cause cou-
pling between transversal and torsional response and they are c(l, 3) and c(3, 4). On the other
hand for fully open crack c(2, 3) is zero.

According to Fig. 11, it can be seen that c(l, 3), for 30° slant crack and 90° slant crack are
equal to each other and both of them are zero; therefor spectrums of transversal responses for
both of them (30° and 90° slant crack) have the same schema. It should be noticed that existence
of combined frequencies such as n :l:::WT and 2n :l:::WT in the spectrum of transversal response
(for 30° and 90°) are due to coupling phenomena that caused by eccentricity (that can be seen
in the equations of the motion).

The spectrums of torsional responses (Figs. 12-15) for all crack angles contain nand WT

frequencies. Also all the mentioned spectrums have n + WT frequency except in spectrums
with 30° and 900 slant cracks. Existence of n, WT and n ::l::WT frequencies in the spectrums
of longitudinal responses (Figs. 12-15) is obvious. In all of these spectrums, the 2n frequency
can be detected. However, as the peaks are very small in 300 and 900 slant crack, they are not
easily detectable. It is clear that the amplitude of frequency response functions for different
crack angles are not equal.

Fig. 16 compares these amplitudes at the prominent frequencies (n, 2[2, n:l:::wTand 2[2:l:::wT
for transversal, nand WT for torsional and longitudinal spectrums [7]).

According to Fig. 16, in n frequency, when the crack angle increases from 30° to 600, the
amplitude of transversal responses increase to maximum, then increasing in the crack angle
from 800 to 900 increases the amplitude. In 2n frequency, increasing in the crack angle from
300 to 45°, increases the value of amplitude of the transversal responses and then from 450 to
900 the mentioned amplitude decreases. The n :l:::WT frequencies in the transversal responses
have the same variations versus crack angles. In these frequencies, any increase in the crack ori-
entations from 300 to 60°, increases the amplitude of transversal responses and any increase in
the crack angle from 600 to 900 decreases the amplitude of them. In [2 frequency the amplitude
of torsional responses increases when the crack angle increases from 300 to 600• Whereas from
600 to 900, any increase in the crack angle, decreases the amplitude. In these spectrums and for
WT frequency, any increase from 30° to 900 increases amplitude. In [2 frequency, any increase
in the crack angle from 300 to 900, increases the amplitude of longitudinal responses. However
in these spectrums and for WT frequency, any increase in crack angle from 300 to 600, increases
the amplitude of these responses and for crack angles between 600 to 900 decreases them.

5. Conclusions

In this paper the dynamic behavior of a Jeffcott rotor system with a slant crack under arbitrary
crack orientations is investigated. Using concepts of fracture mechanics, flexibility matrix and
subsequently stiffness matrix of the system are evaluated and the influence of crack orienta-
tions on the flexibility coefficients is investigated. In this paper a symmetric relation for global
stiffness matrix is presented and proved; whereas there are some literatures that reported non-
symmetrical form for this matrix. It i" shown that for fully open crack c(l, 1), c(2, 2), c(4,4),
and c(l, 4) coefficients are more for transverse crack rather than slant crack. For slant crack,
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the more cra~k angle is, the more c(3, 3) coefficient will be. However for 60° slant crack c(3, 4)
and c(1, 3} will be max and it shows that for 60° slant crack, the stiffness coupling between
torsional directi9n and other directions increases. Therefor in the transversal response and in
n :1::Wy frequencies, there is a maximum in the amplitude of the spectrum for 60° slant crack.
In similar, there is a maximum in the amplitude of longitudinal response at 60° crack angle,
because thete is a maximum for c(3, 4) coefficient in this angle.

Also It is shown that the amplitude of transversal response in the n, n :1::WT, and 2n fre-
quencies wiP be maximum at 60°, 60° and 45° crack angles respectively. For 60° slant crack,
the amplituqe of torsional response in n frequency and the amplitude of longitudinal response
in WT frequ~ncy are maximum.

:1

Appendix 1\
,I

Considering (9) and using chain rule we have
'I

8211V ~
8F2 ':-

Y II

821/'V
8F';
82TV ,
8T2 "

(A-I)

and

(A-2)

8211V
8Fx8Fz
82W
8Fx8T
8211V

8Fy8Fz"
8211V
8FyoT
82liV
8Fz8T

Therefore using (A-I), (A-2) and (8), (I4)is obtained.
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AppendixB: Largest influence sixty degrees crack orientation

It is noticeable that the variation in the system response is due to the elements of the flexibility
matrix. Therefore, any change in the system response is directly related to the flexibility matrix
elements. In the following, we will show that, for instance, the maximum value of c(3, 4) will
happen in an angle of approximately 60 degrees.

Let us consider the following figure:

B

El

! ...j

IJ'.= 7[/2-°1

A c
Fig. A-I. Eland E2 elements for using in Mohr circle

(b)(a)

According to this figure, it is evident that if element E 1 is just under an axial load, the
element E2 with j3 = B = 7r/ 4 will experience the maximum shear stress. Also, if the element
El is under pure shear, the element E2 with j3 = B = 7r / 4 is under axial stress only. However,
for cases in which the element is under mixed loads, the maximum shear stress will not happen
at an angle of 45 degrees.

Assume that element El is under pure shear stress. According to Fig. A-2, the tension and
shear stresses for an element after rotation of j3 in CCW direction, is expressed as:

Ii

Fig. A-2. a) EI element and E2 element after /3 rotation (CCW), b) Mohr circle with center O'M and
radius RM
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(T~ - 71sin(2j3) = 71sin(7r - 2B) = 71sin(2B),
7{ 71cos(2j3) = -71 cos(2B).

In the above equations,
TR 2T

71 = (7rR4/2) = 7rR3'
In a similar way, consider the element El which is under uniaxial tension only.
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....
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-I

a'I
(a) (b)

Fig. A-3. a)~El ~lement and E2 element after (3 rotation (CCW), b) Mohr circle with center O'jI,I and
radius RM ;

The she~r and axial stresses for a rotated element with angle {3in CCW direction can be
expressed as:

(}l (}l (}l . ?- + - cos(2{3) = -(1+ cos(7I - 2e)) = (}l sm~(e),
2 2 2

(}l (}l . . ( )- cos(2{3) = - sm(2e) = (}l sm e) cos( e .
2 2

(A-6)

(A-7)

"In the above equations (}l is:, ~
ii (}l = 71R2' (A-8)

Therefore, the maximum tension and shear stresses for an element under combined loading is:

(A-9)

(A-14)

(A-l3)

(A-ll)

(A-lO)Tmax

(}max

~2~2
u 'max

,f f)ql f)T

2T . ql. 2
7IR3 sm(2e) + 7IR2 sm (e),
2T ql .

- R3 cos(2e) + R2' sm(e) cos(e).71 71
According to Eqs. (21) and (22) in calculating the elements of flexibility matrix, the squared of

l
(}max and TrJax need to be calculated:

,I " '2 (ql. 2 2T. ) 2
(}max 1rR2 sm (e) + 1rR3 sm(2e) + ...

(
2T ql . )2

T~ax - 7IR3 cos(2e) + 1rR2 sm(B) COS(e)+ ... (A-12)

To determide the element c(3, 4), one should compute the second derivatives of of (}~ax and
Tl~ax with respect to ql and T

i
,;f)2(}2 f)2 (, 2T ) 2
if max ~ ~ qR

1
?sin2(e) + R3 sin(2e) + ...

,f)qlf)T uqluT 1r - 1r

(2)(1)'2 .2 1rR3 1rR2 sm (e)sm(2e),

f)2 ( 2T ql . ) 2
f)ql f)T - 1rR3 cos(2e) + 1rR2 sm( e) cos( e) + ...

- 2 (71~3) (1r~2) sin( e) cos( e) cos(2e).
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(A-16)

908050 60 70
crack orientation angle (8)

40

F(8) = sin(8)2 sin(28) - cos(8) sin(8) cos(28)
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The variat~:on of F( e) as a function of e is shown in the following figure. The plot shows that
the maximum occurs in an angle of 60 approximately.
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Thereforeo!!the element c(3, 4) of the flexibility matrix is proportional to function H in the fol-
lowing equation:

I
'i
1

Fig. A-4. The variation of F(B) versus of B
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