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Abstract. We present a semi-concurrent multiscale method to couple the commercial finite element package ABAQUS to the open source 
software LAMMPS. The coupling is implemented for static and dynamic applications. The semi-concurrent multiscale method here is based 
on the Cauchy-Born rule to compute stress/stiffness in continuum domain. It is realized through the ABAQUS user-interface UMAT and 
VUMAT. Implementation details are provided in this manuscript and the subroutines are made available at our homepage. One verification 
example is presented to show the validity of the coupling approach. 
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1. INTRODUCTION 

Nanoscience has been a rapidly growing science in the 
last two decades. Among various methodologies, molecu-
lar dynamics (MD) has gained exceptional success among 
others especially because of advances in the computational 
power. However, due to their high computational cost, 
MD simulations are restricted to specimen of small size. 
Therefore, multiscale methods have been developed to 
bridge different scales. In computational materials design, 
multiscale methods are powerful tools to extract material 
parameters based on fine-scale details. The FE2 method by 
Feyel et. al [1] is one of the most successful semi-
concurrent multiscale method that accounts for fine-scale 
features on the coarse-scale. In this manuscript, we present 
a method to couple the commercial software package 
ABAQUS [2] to the open-source MD-software LAMMPS 
[3] through an FE2-type method. An atomistic description 
is chosen on the fine-scale and a continuum model is used 
on the coarse-scale. In this manuscript, we restrict our 
studies to the Cauchy-Born (CB) bridging information 
from the atomistic scale to the continuum scale though the 
coupling is implemented for more general cases.  

The implementation of (semi-)concurrent multiscale 
methods is a tedious task, particularly when either the 
MD-code or the FE-code has to be implemented from 
scratch. In this paper we try to bridge the gap between two 
well-known software for continuum and atomistic model-
ling in order to bring the method into a real-world applica-
tion. This paper is organized as follows. First, the Cauchy-
Born rule was presented briefly. Some implementation 
details are mentioned and then the numerical example is 
given to verify the method. 

2. CAUCHY-BORN RULE 
In the continuum-atomistic coupling, one approach is to 

replace the macroscopic strain energy density 0W  per unit 
volume in the material configuration by appropriate atom-
istic potentials [4-6]. In the continuum-atomistic model, 
the important step is to find a correspondence between an 
atomistic energy function iE  and a specific strain energy 

density 0W . By the assumption that the individual atomic 
contributions to the total energy can be defined and that 

the energy of each atom i  is uniformly distributed over 
the volume iV  of its Voronoi polyhedron in Fig. 1, both 
energies can be related as follows [6]: 

 
Figure 1. The 1st-order Cauchy-Born rule for the homoge-
neous deformation 
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where N  is the number of atoms in the discrete lattice. 
For the establishment of a relation between atomic dis-
tance vectors and continuum deformation, 1st-order 
Cauchy-Born Rule (CBR) was used here. The idea of CBR 
comes from considering homogeneous deformations of an 
infinite representative crystallite. Suppose that ijr and ijR  
are lattice vectors in spatial and material coordinates and a 
deformation map )(X  relates the material placement 
X  to the spatial placement )(Xx  . By defining 

XF   as the local deformation gradient, 
 

ijij RFr   (2) 
 

Combining Eq. (1) and Eq. (2), the strain energy den-
sity 0W  can be expressed as a function of the fixed dis-
tance vectors in material coordinate and deformation gra-
dient: 
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 Note that the distance vectors ijR  in material coordi-
nate depend only on initial geometrical crystal lattice 
structure. Therefore, each point of continuum domain can 
be modelled by an infinite crystal under homogeneous 
deformation. It should be mentioned that for pair potential, 
there is a cut-off radius cr  which limits the extension of 
crystal structure. In homogeneous deformation, the ener-
gies of all atoms are equivalent and hence, Eq. (1) can be 
written as: 

 

),...,(

),...,(),...,(1

10

1
10

iNi

i

iNii
iNii

i

rrW
V

rrErrNE
NV

W




 (4) 

 

From Eq. (4), it can be seen that for strain energy den-
sity in the entire lattice, the energy of one atom is suffi-
cient. Furthermore, for pair potentials, 0W  can be ex-

pressed in terms of interatomic pairwise interactions ( ij
): 
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In this case, the explicit constitute law can be written 
as: 
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where P  is 1st Piola-Kirchhoff stress tensor. Consider-
ing the relation between interatomic force, ijji ff  , iP  
can be defined as: 
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In the case of the homogeneous deformation (standard 
Cauchy-Born rule), 
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Similarly, the 4th tangent operator C  which relates the 
material rate of P  to the material rate of F , can be ex-
pressed as: 
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In the case of pair potentials the Eq. (9) can be simpli-
fied1: 
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In this equation, ijk  is the stiffness in atomic level and 
can be expressed as [7]: 
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For homogeneous deformation, the global tangent and 
the local tangent are equal: 
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3. IMPLEMENTATION DETAILS 
The connection between LAMMPS and ABAQUS was 

established through a Fortran2003 interface exploiting the 
ISOCBINDING module of Fortran 2003 standard. This 
interface allows accessing to many LAMMPS classes. A 
new "compute" was implemented into LAMMPS in C++ 
where it will compute the stress or material constitutive 
stiffness getting a deformation gradient with the Cauchy-
Born rule. By using the deformation gradient from 
ABAQUS, the ABAQUS user material subroutine calls the 
compute command and gets back the stress/stiffness via 
the interface2. The lower-scale model is created with some 
LAMMPS commands input at the first time calling the 
material subroutine. For the subsequent calls, only the 
deformation gradient is changed and the compute com-
mand is called again. This way the overhead will be mini-
mum for the multiscale model. This method is very flexi-
ble which can be used for many different potentials and 
material configuration. Moreover, the generality of the 
implementation allows for other homogenization methods 
to be used to extract the continuum properties. 

4. NUMERICAL EXAMPLE 
A three dimensional dog-bone specimen was used to 

test the multiscale method. Since the sections of the 
specimen which are in the grips does not have any strain, 
the distance between grips was considered in this study. 
Fig. 2 shows the model geometry and dimensions. Here, 
the metal unit system of LAMMPS was used in both 
scales. In this unit system, the distance unit is Angstroms, 
time unit is picoseconds, energy unit is eV, force unit is 

                                                      
1 The non-standard dyadic product   for 2nd-order tensors is 

defined as   tBCACBA  :  
2 For more information about ABAQUS UMAT and Fortran 
interface, please visit the following website: 
https://sites.google.com/site/permixproject/lammps2f03 
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eV/Angstrom, pressure unit is bars and mass unit is 
grams/mole. The simulation was conducted using a dis-
placement control method and due to symmetry, only a 
one eighth of specimen was simulated, Fig. 3. For the 
underlying material model, a small FCC lattice with the 
lattice parameter 645.3 Å is defined. The inter-atomic 
forces are described with the Lennard-Jones (LJ) potential: 
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where   is the depth of the potential well and   is the 
finite distance at which the inter-particle potential is zero.  
For this simulation, the LJ potential parameters are se-
lected as 2.29621   and 0.467  . These parame-
ters are correspondent to those of Copper. Though in gen-
eral, the LJ potential is not very suitable for modeling 
metals. Nevertheless, the LJ potential can fairly represent 
the overall material behaviour in the atomistic scale and 
often researchers use it to show some conceptual phenom-
ena rather than real material behavior [8–10]. Only nearest 
neighbour interactions are considered here. Fig. 4 shows 
the von-Mises stress contour. 

The general coupling procedure of the two software can 
be applied to any type of material which can be handled by 
LAMMPS in the fine scale and ABAQUS in the coarse 
scale. However, since we used the Cauchy-Born rule here 
to compute the homogenized material properties, the cur-
rent implementation can be used for materials that can be 
modeled by pair potentials such as Lennard-Jones, Embe-
ded Atom Method (EAM), Modified Embedded Atom 
Method (MEAM), etc. The last two potential are very 
much suitable to model metals such as steel and copper 
[11, 12]. Using another homogenization procedure such as 
the FE2 method [1], this implementation can be further 
used to model materials from Macro-Meso-Scale with the 
Peridynamic capability of LAMMPS [13]. 

 

 
Figure 2. The dimensions of dog-bone sample 

 

 
Figure 3. The initial dog-bone configuration 

 

 
Figure 4. The von-Mises stress contour 

 

Fig. 5 shows the stress-strain curve for a highly stress 
integration point. As it can be observed from Fig. 5, the 
material undergoes strain softening after %11  of strain. 

 

 
Figure 5. The plot of stress versus strain for an integration 
point with maximum stress 

 

5. CONCLUSION 
Based on a semi-concurrent multiscale method, we 

coupled the FE-software package ABAQUS with the MD-
software LAMMPS. Using the user material subroutines of 
ABAQUS at every Gauss point, the deformation gradient 
of the continuum domain was transferred to the atomistic 
software (LAMMPS). The Cauchy-Born rule was used to 
calculate the stress tensor and the consistent material tan-
gent stiffness tensor from the atomistic model. We pre-
sented one example, a dog-bone specimen under uni-axial 
tension and used the LJ-potential on atomistic scale to 
show the validity of the method. In the future, we will 
extend the method to more complex potentials, fracture 
[14-17], meshfree methods [18] and large deformations 
[19]. 
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