Multi Freedom Constraints

By
S. Ziaei Rad
Multifreedom Constraints

Single freedom constraint examples

\[u_{x4} = 0 \quad \text{linear, homogeneous} \]
\[u_{y9} = 0.6 \quad \text{linear, non-homogeneous} \]

Multi freedom constraint examples

\[u_{x2} = \frac{1}{2} u_{y2} \quad \text{linear, homogeneous} \]
\[u_{x2} - 2u_{x4} + u_{x6} = 0.25 \quad \text{linear, non-homogeneous} \]
\[(x_5 + u_{x5} - x_3 - u_{x3})^2 + (y_5 + u_{y5} - y_3 - u_{y3})^2 = 0 \quad \text{nonlinear, homogeneous} \]
Sources of Multifreedom Constraints
1- Skew displacement BCs
2- Coupling nonmatched FEM meshes
3- Global-local and multiscale analysis
4- Incompressibility

MFC Application Methods
1- Master-Slave Elimination
2- Penalty Function Augmentation
3- Lagrange Multiplier Adjunction
Example 1D Structure to Illustrate MFCs

Multifreedom constraint:

\[u_2 = u_6 \quad \text{or} \quad u_2 - u_6 = 0 \]

Linear homogeneous MFC
Example 1D Structure (Cont'd)

Unconstrained master stiffness equations

\[
\begin{bmatrix}
K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\
K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 \\
0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 \\
0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\
0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 \\
0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} \\
0 & 0 & 0 & 0 & 0 & K_{67} & K_{77}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5 \\
u_6 \\
u_7
\end{bmatrix}
=
\begin{bmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4 \\
f_5 \\
f_6 \\
f_7
\end{bmatrix}
\]

\[Ku = f \]
Master Slave Method for Example Structure

Recall: \(u_2 = u_6 \) \quad \text{or} \quad \underline{u_2} - u_6 = 0

Taking \(u_2 \) as master:

\[
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4 \\
 u_5 \\
 u_6 \\
 u_7 \\
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4 \\
 u_5 \\
 u_6 \\
 u_7 \\
\end{bmatrix}
\]

or

\[
\underline{u} = \hat{T}\underline{u}.
\]
Forming the Modified Stiffness Equations

Unconstrained master stiffness equation: \(Ku = f \)

Master-slave transformation: \(u = T \hat{u} \)
\[\hat{K} = T^T K T \]
\[\hat{f} = T^T f \]

Congruent transformation:

Modified stiffness equations: \(\hat{K} \hat{u} = \hat{f} \)
Modified Stiffness Equations for Example Structure

\(u_2 \) as master and \(u_6 \) as slave DOF.

\[
\begin{bmatrix}
K_{11} & K_{12} & 0 & 0 & 0 & 0 \\
K_{12} & K_{22} + K_{66} & K_{23} & 0 & K_{56} & K_{67} \\
0 & K_{23} & K_{33} & K_{34} & 0 & 0 \\
0 & 0 & K_{34} & K_{44} & K_{45} & 0 \\
0 & K_{56} & 0 & K_{45} & K_{55} & 0 \\
0 & K_{67} & 0 & 0 & 0 & K_{77}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5 \\
u_7
\end{bmatrix}
=
\begin{bmatrix}
f_1 \\
f_2 + f_6 \\
f_3 \\
f_4 \\
f_5 \\
f_7
\end{bmatrix}
\]

\(u_6 \) as master and \(u_2 \) as slave DOF.

\[
\begin{bmatrix}
K_{11} & 0 & 0 & 0 & K_{12} & 0 \\
0 & K_{33} & K_{34} & 0 & K_{23} & 0 \\
0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\
0 & 0 & K_{45} & K_{55} & K_{56} & 0 \\
K_{12} & K_{23} & 0 & K_{56} & K_{22} + K_{66} & K_{67} \\
0 & 0 & 0 & 0 & K_{67} & K_{77}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_3 \\
u_4 \\
u_5 \\
u_6 \\
u_7
\end{bmatrix}
=
\begin{bmatrix}
f_1 \\
f_3 \\
f_4 \\
f_5 \\
f_2 + f_6 \\
f_7
\end{bmatrix}
\]

Although they are algebraically equivalent, the latter would be processed faster if a skyline solver is used for the modified equations.
Multiple MFCs

Suppose

\[u_2 - u_6 = 0, \quad u_1 + 4u_4 = 0, \quad 2u_3 + u_4 + u_5 = 0 \]

take 3, 4 and 6 as slaves:

\[u_6 = u_2, \quad u_4 = -\frac{1}{4}u_1, \quad u_3 = -\frac{1}{2}(u_4 + u_5) = \frac{1}{8}u_1 - \frac{1}{2}u_5 \]

and put in matrix form:

\[
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4 \\
 u_5 \\
 u_6 \\
 u_7
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 \frac{1}{8} & 0 & -\frac{1}{2} & 0 & 0 \\
 -\frac{1}{4} & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4 \\
 u_5 \\
 u_6 \\
 u_7
\end{bmatrix}
\]
Nonhomogeneous MFCs

\[u_2 - u_6 = 0.2 \]

In matrix form

\[
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4 \\
 u_5 \\
 u_6 \\
 u_7 \\
\end{bmatrix}
=
\begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
-
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4 \\
 u_5 \\
 u_6 \\
 u_7 \\
\end{bmatrix}
\]
Nonhomogeneous MFCs (cont'd)

\[u = T\hat{u} - g \]

\[T^T K T\hat{u} = \hat{K}\hat{u} = \hat{\mathbf{f}} = T^T \mathbf{f} + T^T K \mathbf{g} \]

For the example structure

\[
\begin{bmatrix}
K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\
K_{12} & K_{22} + K_{66} & K_{23} & 0 & K_{56} & K_{67} & 0 \\
0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 \\
0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\
0 & K_{56} & 0 & K_{45} & K_{55} & 0 & 0 \\
0 & K_{67} & 0 & 0 & 0 & K_{77} & 0
\end{bmatrix}
\begin{bmatrix}
u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_7
\end{bmatrix}
= \begin{bmatrix}
f_1 \\ f_2 + f_6 - 0.2K_{66} \\ f_3 \\ f_4 \\ f_5 - 0.2K_{56} \\ f_7 - 0.2K_{67}
\end{bmatrix}
\]

a modified force vector
The General Case of MFCs

For implementation in general-purpose programs the master-slave method can be described as follows. The degrees of freedoms in \(\mathbf{u} \) are classified into three types: independent or uncommitted, masters and slaves.

\[
\begin{bmatrix}
K_{uu} & K_{um} & K_{us} \\
K_{mu} & K_{mm} & K_{ms} \\
K_{su} & K_{sm} & K_{ss}
\end{bmatrix}
\begin{bmatrix}
\mathbf{u}_u \\
\mathbf{u}_m \\
\mathbf{u}_s
\end{bmatrix} =
\begin{bmatrix}
\mathbf{f}_u \\
\mathbf{f}_m \\
\mathbf{f}_s
\end{bmatrix}
\]

The MFCs may be written in matrix form as

\[
A_m \mathbf{u}_m + A_s \mathbf{u}_s = \mathbf{g}, \quad \mathbf{u}_s = -A_s^{-1} A_m \mathbf{u}_m + A_s^{-1} \mathbf{g} = \mathbf{T} \mathbf{u}_m + \mathbf{g},
\]

Inserting into the partitioned stiffness matrix and symmetrizing

\[
\begin{bmatrix}
K_{uu} & K_{um}T \\
TTK_{um} & TTK_{mm}T
\end{bmatrix}
\begin{bmatrix}
\mathbf{u}_u \\
\mathbf{u}_m
\end{bmatrix} =
\begin{bmatrix}
\mathbf{f}_u - K_{us} \mathbf{g} \\
\mathbf{f}_m - K_{ms} \mathbf{g}
\end{bmatrix}
\]
Model Reduction

The congruential transformation equation (*) has additional applications beyond the master-slave method. An important one is *model reduction by kinematic constraints*. Through this procedure the number of DOF of a static or dynamic FEM model is reduced by a significant number, typically to 1% to 10% of the original number. This is done by taking a lot of slaves and a few masters. Only the masters are left after the transformation. Often the reduced model is used in subsequent calculations as component of a larger system, particularly during design or in parameter identification.
Model Reduction (cont'd)

Lots of slaves, few masters. Only masters are left. Example of previous slide:

Applying the congruential transformation we get the reduced stiffness equations

\[
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \\
 u_4 \\
 u_5 \\
 u_6 \\
 u_7
\end{bmatrix}
=
\begin{bmatrix}
 1 & 0 \\
 5/6 & 1/6 \\
 4/6 & 2/6 \\
 3/6 & 3/6 \\
 2/6 & 4/6 \\
 1/6 & 5/6 \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_7
\end{bmatrix}
\]

5 slaves \[\rightarrow\] 2 masters

\[u = T \hat{u} \rightarrow \hat{K}\hat{u} = T^T K T \hat{u} = T^T f = \hat{f},\]

Applying the congruential transformation we get the reduced stiffness equations

\[
\begin{bmatrix}
 \hat{K}_{11} & \hat{K}_{17} \\
 \hat{K}_{17} & \hat{K}_{77}
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_7
\end{bmatrix}
=
\begin{bmatrix}
 \hat{f}_1 \\
 \hat{f}_7
\end{bmatrix}
\]

where
Model Reduction (cont'd)

\[\hat{K}_{11} = \frac{1}{36} (36K_{11} + 60K_{12} + 25K_{22} + 40K_{23} + 16K_{33} + 24K_{34} + 9K_{44} + 12K_{45} + 4K_{55} + 4K_{56} + K_{66}) \]
\[\hat{K}_{17} = \frac{1}{36} (6K_{12} + 5K_{22} + 14K_{23} + 8K_{33} + 18K_{34} + 9K_{44} + 18K_{45} + 8K_{55} + 14K_{56} + 5K_{66} + 6K_{67}) \]
\[\hat{K}_{77} = \frac{1}{36} (K_{22} + 4K_{23} + 4K_{33} + 12K_{34} + 9K_{44} + 24K_{45} + 16K_{55} + 40K_{56} + 25K_{66} + 60K_{67} + 36K_{77}) \]
\[\hat{f}_1 = \frac{1}{6} (6f_1 + 5f_2 + 4f_3 + 3f_4 + 2f_5 + f_6), \quad \hat{f}_7 = \frac{1}{6} (f_2 + 2f_3 + 3f_4 + 4f_5 + 5f_6 + 6f_7). \]

Assessment of Master-Slave Method

ADVANTAGES

1- exact if precautions taken

2- easy to understand

3- retains positive definiteness

4- important applications to model reduction

DISADVANTAGES

1- requires user decisions

2- messy implementation for general MFCs

3- sensitive to constraint dependence

4- restricted to linear constraints
Condensation Techniques

- Guyan Reduction
- Improved Reduction System (IRS)
- Dynamic Reduction
- System Equivalent Reduction Expansion Process (SEREP).
Reduction Techniques

\[\{x\}_{N \times l} = \begin{bmatrix} x_n \\ x_s \end{bmatrix}_{N \times l} = [T]_{N \times n} \{x\}_{n \times l} \]

Master Dofs

Slave Dofs

Transformation Matrix

\[[M]_{n \times n} = [T]^T [M]_{N \times N} [T] \]
\[[K]_{n \times n} = [T]^T [K]_{N \times N} [T] \]
\[\{ \ddot{x}_s \} = -[K]^{-1}[K]\{x_n\} + [K]\{f_s\} \]

Consider the lower row of the above equation

Ignore the inertia term:

\[[M]\{\ddot{x}_s\} + [K]\{x_s\} = \{f_s\} \]
Guyan Reduction

Assuming that there are no external forces at the slave DOFs

\[\{x_s\} = -[K_{ss}]^{-1}[K_{sn}]{x_n} \]

Then

\[[T] = \begin{bmatrix} [I] \\ -[K_{ss}]^{-1}[K_{sn}] \end{bmatrix} \]

Guyan Transformation matrix
Guyan Reduction

- Since the inertia terms are neglected, this technique is also called static reduction.
- Guyan reduction depends heavily on the selection of the master degrees of freedom.
- A poor selection yielding inaccurate models.
Penalty Function Method
(Physical Interpretation)

Recall the example structure under the homogeneous MF $u_2 = u_6$

"penalty element" of axial rigidity w

$$w \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_2 \\ u_6 \end{bmatrix} = \begin{bmatrix} f_2^{(7)} \\ f_6^{(7)} \end{bmatrix}$$
Penalty Function Method (cont'd)

Upon merging the penalty element the modified stiffness equations are

\[
\begin{bmatrix}
K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\
K_{12} & K_{22} + w & K_{23} & 0 & 0 & -w & 0 \\
0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 \\
0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\
0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 \\
0 & -w & 0 & 0 & K_{56} & K_{66} + w & K_{67} \\
0 & 0 & 0 & 0 & 0 & K_{67} & K_{77}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5 \\
u_6 \\
u_7
\end{bmatrix}
=
\begin{bmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4 \\
f_5 \\
f_6 \\
f_7
\end{bmatrix}
\]

This modified system is submitted to the equation solver. Note that \(\mathbf{u} \) retains the same arrangement of DOFs.
But which penalty weight to use?

If a finite weight \(w \) is chosen the constraint \(u_2 = u_6 \) is approximately satisfied in the sense that one gets \(u_2 - u_6 = eg \), where \(eg = 0 \). The “gap error” \(eg \) is called the \textit{constraint violation}. The magnitude \(|eg| \) of this violation depends on \(w \): the larger \(w \), the smaller the violation.

More precisely, it can be shown that \(|eg| \) becomes proportional to \(1/w \) as \(w \) gets to be sufficiently large. However, this is misleading. As the penalty weight \(w \) tends to infinity the modified stiffness matrix becomes more and more \textit{ill-conditioned with respect to inversion}.

Obviously we have two effects at odds with each other. Making \(w \) larger reduces the constraint violation error but increases the solution error. The best \(W \) is that which makes both errors roughly equal in absolute value. This tradeoff value is difficult to find aside of systematically running numerical experiments. In practice the heuristic \textit{square root rule} is often followed.

This rule can be stated as follows. Suppose that the largest stiffness coefficient, before adding penalty elements, is of the order of \(10^k \) and that the working machine precision is \(p \) digits. Then choose penalty weights to be of order \(10^{k+p/2} \) with the proviso that such a choice would not cause arithmetic overflow.
But which penalty weight to use?

The name “square root” arises because the recommended w is in fact $10^k \sqrt{10^p}$. Thus it is seen that the choice of penalty weight by this rule involves knowledge of both stiffness magnitudes and floating-point hardware properties of the computer used.

Rough guideline: "square root rule";
Penalty Function Method - General MFCs

\[3u_3 + u_5 - 4u_6 = 1 \]

Premultiply both sides by \(b' \):

\[\begin{bmatrix} 3 & 1 & -4 \end{bmatrix} \begin{bmatrix} u_3 \\ u_5 \\ u_6 \end{bmatrix} = 1 \]

Scale by \(w \) and merge:

\[
\begin{bmatrix}
K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\
K_{12} & K_{22} & 0 & 0 & 0 & 0 & 0 \\
0 & K_{23} & K_{33} + 9w & K_{34} & 3w & -12w & 0 \\
0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\
0 & 0 & 3w & K_{45} & K_{55} + w & K_{56} - 4w & 0 \\
0 & 0 & -12w & K_{56} - 4w & K_{66} + 16w & K_{67} & K_{77} \\
0 & 0 & 0 & 0 & 0 & K_{67} & K_{77}
\end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 + 3w \\ f_4 \\ f_5 + w \\ f_6 - 4w \\ f_7 \end{bmatrix}
\]
The rule comes from the following mathematical theory. Suppose we have a set of \(m \) linear MFCs.

\[
\mathbf{a}_p \mathbf{u} = b_p, \quad p = 1, \ldots, m
\]

where \(\mathbf{u} \) contains all degrees of freedom and each \(\mathbf{a}_p \) is a row vector with same length as \(\mathbf{u} \). To incorporate the MFCs into the FEM model one selects a weight \(w_p > 0 \) for each constraints and constructs the so-called Courant quadratic penalty function or “penalty energy”

\[
P = \sum_{p=1}^{m} P_p, \quad \text{with} \quad P_p = \mathbf{u}^T \left(\frac{1}{2} \mathbf{a}_p^T \mathbf{a}_p \mathbf{u} - w_p \mathbf{a}_p^T b_p \right) = \frac{1}{2} \mathbf{u}^T \mathbf{K}^{(p)} \mathbf{u} - \mathbf{u}^T \mathbf{f}^{(p)}
\]

where \(\mathbf{K}^{(p)} = w_p \mathbf{a}_p^T \mathbf{a}_p \) and \(\mathbf{f}^{(p)} = w_p \mathbf{a}_p^T b_i \).
Theory of Penalty Function Method - General MFCs

Next, P is added to the potential energy function
$$\Pi = \frac{1}{2} u^T Ku - u^T f$$
to form the augmented potential energy
$$\Pi_a = \Pi + P$$
Minimization of Π_a with respect with u yields
$$\left(Ku + \sum_{p=1}^{m} K^{(p)} \right) u = f + \sum_{p=1}^{m} f^{(p)}$$

To use a even more compact form we may write the set of multifreedom constraints as $Au = b$. Then the penalty augmented system can be written compactly as
$$\left(K + A^T W A \right) u = f + W A^T b,$$
where W is a diagonal matrix of penalty weights. This compact form, however, conceals the structure of the penalty elements.
Assessment of Penalty Function Method

ADVANTAGES

1- general application (inc' nonlinear MFCs)
2-easy to implement using FE library and standard assembler
3-no change in vector of unknowns
4-retains positive definiteness
5-insensitive to constraint dependence

DISADVANTAGES

1- selection of weight left to user
2-accuracy limited by ill-conditioning
Lagrange Multiplier Method

Physical Interpretation

\[
\begin{bmatrix}
K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\
K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 \\
0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 \\
0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\
0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 \\
0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} \\
0 & 0 & 0 & 0 & 0 & K_{67} & K_{77}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5 \\
u_6 \\
u_7
\end{bmatrix}
=
\begin{bmatrix}
f_1 \\
f_2 - \lambda \\
f_3 \\
f_4 \\
f_5 \\
f_6 + \lambda \\
f_7
\end{bmatrix}
\]
Lagrange Multiplier Method (cont'd)

Because λ is unknown, it is passed to the LHS and appended to the node-displacement vector:

\[
\begin{bmatrix}
K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 & 0 \\
K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 & 1 \\
0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 & 0 \\
0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 & 0 \\
0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 & 0 \\
0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} & -1 \\
0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} & 0 \\
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5 \\
u_6 \\
u_7 \\
\lambda \\
\end{bmatrix}
=
\begin{bmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4 \\
f_5 \\
f_6 \\
f_7 \\
\end{bmatrix}
\]

This is now a system of 7 equations and 8 unknowns. Needs an extra equation: the MFC.
Lagrange Multiplier Method (cont'd)

Append MFC as additional equation:

\[
\begin{bmatrix}
K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 & 1 \\
0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 & 0 \\
0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 & 0 \\
0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 & 0 \\
0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} & -1 \\
0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ \lambda \end{bmatrix}
= \begin{bmatrix}
f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ 0 \end{bmatrix}
\]

This is the *multiplier-augmented system*. The new coefficient matrix is called the *bordered stiffness*.
Lagrange Multiplier Method - Multiple MFCs

Three MFCs: \(u_2 - u_6 = 0, \quad 5u_2 - 8u_7 = 3, \quad 3u_3 + u_5 - 4u_6 = 1 \)

Recipe step #1: append the 3 constraints

\[
\begin{bmatrix}
K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 \\
K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 \\
0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 \\
0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 \\
0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 \\
0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} \\
0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} \\
0 & 1 & 0 & 0 & 0 & -1 & 0 \\
0 & 5 & 0 & 0 & 0 & 0 & -8 \\
0 & 0 & 3 & 0 & 1 & -4 & 0 \\
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5 \\
u_6 \\
u_7
\end{bmatrix}
=
\begin{bmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4 \\
f_5 \\
f_6 \\
f_7
\end{bmatrix}
\]
Lagrange Multiplier Method - Multiple MFCs

Recipe step #2:
append multipliers, symmetrize and fill

\[
\begin{pmatrix}
K_{11} & K_{12} & 0 & 0 & 0 & 0 & 0 & 0 \\
K_{12} & K_{22} & K_{23} & 0 & 0 & 0 & 0 & 0 \\
0 & K_{23} & K_{33} & K_{34} & 0 & 0 & 0 & 0 \\
0 & 0 & K_{34} & K_{44} & K_{45} & 0 & 0 & 0 \\
0 & 0 & 0 & K_{45} & K_{55} & K_{56} & 0 & 0 \\
0 & 0 & 0 & 0 & K_{56} & K_{66} & K_{67} & 0 \\
0 & 0 & 0 & 0 & 0 & K_{67} & K_{77} & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 & 0 & -8 & 0 \\
0 & 0 & 3 & 0 & 1 & -4 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\end{pmatrix}
=
\begin{pmatrix}
1 & 5 & 0 \\
0 & 0 & 3 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
-1 & 0 & -4 \\
0 & -8 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5 \\
u_6 \\
u_7 \\
\lambda_1 \\
\lambda_2 \\
\lambda_3 \\
\end{pmatrix}
=
\begin{pmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4 \\
f_5 \\
f_6 \\
f_7 \\
0 \\
0 \\
1 \\
\end{pmatrix}
The recipe illustrated in previous slides comes from a well known technique of variational calculus. Using the matrix notation we write, the set of m MFCs by $Au=b$, where A is $m \times n$. The potential energy of the unconstrained finite element model is

$$\Pi = \frac{1}{2} u^T Ku - u^T f.$$

To impose the constraint, adjoin m Lagrange multipliers collected in vector λ and form the Lagrangian

$$L(u, \lambda) = \Pi + \lambda^T (Au - b) = \frac{1}{2} u^T Ku - u^T f + \lambda^T (Au - b).$$

Extremization of Π with respect to u and yields the multiplier-augmented form

$$\begin{bmatrix}
K & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
u \\
\lambda
\end{bmatrix}
=
\begin{bmatrix}
f \\
b
\end{bmatrix}$$
Assessment of Lagrange Multiplier Method

ADVANTAGES
1- general application
2- exact
3- no user decisions ("black box")

DISADVANTAGES
1- difficult implementation
2- additional unknowns
3- loses positive definiteness
4- sensitive to constraint dependence
MFC Application Methods: Assessment Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Master-Slave Elimination</th>
<th>Penalty Function</th>
<th>Lagrange Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generality</td>
<td>fair</td>
<td>excellent</td>
<td>excellent</td>
</tr>
<tr>
<td>Ease of implementation</td>
<td>poor to fair</td>
<td>good</td>
<td>fair</td>
</tr>
<tr>
<td>Sensitivity to user decisions</td>
<td>high</td>
<td>high</td>
<td>small to none</td>
</tr>
<tr>
<td>Accuracy</td>
<td>variable</td>
<td>mediocre</td>
<td>excellent</td>
</tr>
<tr>
<td>Sensitivity as regards constraint dependence</td>
<td>high</td>
<td>none</td>
<td>high</td>
</tr>
<tr>
<td>Retains positive definiteness</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Multi Freedom Constraints

The End

Which methods to use?